

RTO: 45049 W: <u>www.centralinnovation.com/training</u> T: 1300 423 372 E: training@centralinnovation.com

Course Outline

SOLIDWORKS Simulation			
Description	This course will provide an in-depth coverage on the basics of Finite Element Analysis (FEA), covering the entire analysis process from meshing to evaluation of results for parts and assemblies. The class discusses linear stress analysis, gap/contact analysis, and best practices.		
Prerequisites	Equivalent or in addition to SOLIDWORKS Essentials		
Duration	3 days		
Delivery Mode	Face to Face OR Online		

Introduction Les	sson 4: Symmetrical and	Lesson 10: Mixed Meshing
What is SOLIDWORKS Fre	ee Self Equilibrated	Solids, Beams & Shells
Simulation? As	semblies	Mixed Meshing
What Is Finite Element Shi	rink Fit Parts	Case Study: Particle Separator
Analysis? Ca	ise Study: Shrink Fit	
Build Mathematical Model Pro	oject Description	Lesson 11: Design Scenarios
Build Finite Element Model An	alysis with Soft Springs	Design Study
Solve Finite Element Model		Case Study: Suspension Design
Analyse Result Errors in FEA Les	sson 5: Assembly Analysis	Part 1: Multiple Load Cases
	ith Connectors	Part 2: Geometry Modification
Degrees of Freedom Co	onnecting Components	
Calculations in FEA Co	onnectors	Lesson 12: Thermal Stress
Interpretation of FEA Results Cas	se Study: Vice Grip Pliers	Analysis
Units of Measurement		Thermal Stress Analysis
Limitations of SOLIDWORKS Les	sson 6:	Case Study: Bimetallic Strip
Simulation Co	ompatible/Incompatible	Examining Results in Local
Me	eshes	Coordinate
Lesson 1: The Analysis Process Co	ompatible / Incompatible	Systems
The Analysis Process Me	eshing	Saving Model in its Deformed
Case Study: Stress in a Plate Case	se Study: Rotor	Shape
Project Description		
	sson 7: Assembly Analysis	Lesson 13: Adaptive Meshing
	esh Refinement	Adaptive Meshing
	esh Control in an Assembly	Case Study: Support Bracket
0	ise Study: Cardan Joint	h-Adaptivity Study
1 0	oblem Statement	p-Adaptivity Study
-	rt 1: Draft Quality Coarse	h vs. p Elements – Summary
	esh Analysis	
	rt 2: High Quality Mesh	Lesson 14: Large
	nalysis	Displacement
Stress Concentrations and		Analysis
-	sson 8: Analysis of Thin	Small vs. Large Displacement
	omponents Thin	Analysis
-	omponents	Case Study: Clamp
-	ise Study: Pulley	Part 1: Small Displacement
1 1	rt 1: Mesh with Solid	Linear
with a Fillet Ele	ements	Analysis

RTO: 45049 W: www.centralinnovation.com/training T: 1300 423 372 E: training@centralinnovation.com

Case Study: Analysis of a	Part 2: Refined Solid Mesh	Part 2: Large Displacement
Welded	Solid vs. Shell	Nonlinear
Bracket	Creating Shell Elements	Analysis
Understanding the Effect of	Part 3: Shell Elements - Mid-	
Boundary Conditions	plane Surface	Appendix A: Meshing, Solvers,
	Results Comparison	and Tips &Tricks
Lesson 3: Assembly Analysis	Case Study: Joist Hanger	Meshing Strategies
with Contacts		Geometry Preparation
Contact Analysis	Lesson 9: Mixed Meshing	Mesh Quality
Case Study: Pliers with Global	Shells & Solids	Mesh Controls
Contact	Mixed Meshing Solids and	Meshing Stages
Pliers with Local Contact	Shells	Failure Diagnostics
	Case Study: Pressure Vessel	Tips for Using Shell Elements
		Hardware Considerations in
		Meshing
		Solvers in SolidWorks
		Simulation
		Choosing a Solver

